TRAFFIC IMPACT ANALYSIS FOR CENTER STAGE MIXED-USE DEVELOPMENT IN CITY OF KELLER, TEXAS

Prepared for:

Mr. AJ Glass
Realty Capital Management 9090 Lake Carolyn Parkway, Suite 150

Irving, Texas 75039

Prepared by:
DeShazo Group, Inc.
Texas Registered Engineering Firm F-3199
400 South Houston Street, Suite 150
Dallas, Texas 75202
214.748.6740

12/12/2019

Traffic Impact Analysis for

 Center Stage Mixed-Use Development in City of Keller, Texas

 Center Stage Mixed-Use Development in City of Keller, Texas}
~ DeShazo Project No. 19125~

Table of Contents

EXECUTIVE SUMMARY 1
INTRODUCTION 3
PURPOSE 3
TRAFFIC IMPACT ANALYSIS - METHODOLOGY 3
ANALYSIS SCENARIOS 4
EXISTING AND PROPOSED LAND USE 7
SITE LOCATION AND STUDY AREA 7
EXISTING SITE AND DEVELOPMENT 7
EXISTING AND PROPOSED TRANSPORTATION SYSTEM 8
THOROUGHFARE SYSTEM 8
EXISTING TRAFFIC VOLUMES 8
PROJECTED BACKGROUND TRAFFIC VOLUMES 8
SITE-TRAFFIC CHARACTERISTICS. 9
TRIP GENERATION 9
TRIP DISTRIBUTION AND ASSIGNMENT 10
SITE-GENERATED TRAFFIC VOLUMES 10
ROADWAY INTERSECTION ANALYSIS 11
INTERSECTION CAPACITY ANALYSIS - METHODOLGY 11
2019 EXISTING - INTERSECTION ANALYSIS 12
2021 BACKGROUND PLUS SITE - INTERSECTION ANALYSIS 14
2025 BACKGROUND AND BACKGROUND PLUS SITE - INTERSECTION ANALYSIS 16
ROADWAY LINK ANALYSIS - METHODOLGY 18
ROADWAY LINK ANALYSIS - RESULTS 19
SITE ACCESS REVIEW 20
INTERSECTION SIGHT DISTANCE 20
DRIVEWAY SPACING REVIEW 20
DECELERATION LANE ANALYSIS. 21
SUMMARY OF FINDINGS AND RECOMMENDATIONS 22

LIST OF TABLES:

Table 1. Development Program Summary
Table 2. Development Scenarios Analyzed
Table 3. Projected Trip Generation
Table 4. Existing Intersection Analysis
Table 5. 2021 Intersection Analysis
Table 6. 2025 Intersection Analysis
Table 7. Roadway Link Capacity Analysis Results Summary
Table 8. Driveway Spacing Summary

LIST OF EXHIBITS:

Exhibit 1. Site Location Map
Exhibit 2. Preliminary Site Plan
Exhibit 3. Existing Roadway Geometry and Traffic Control
Exhibit 4. Proposed Roadway Geometry and Traffic Control

LIST OF APPENDICES:

Appendix A. Traffic Volume Exhibits
Appendix B. Existing Traffic Count Data
Appendix C. Site-Generated Traffic Supplement
Appendix D. Detailed Intersection Capacity Analysis Results
Appendix E. TxDOT/City's Driveway Spacing and Deceleration Lane Criteria

EXECUTIVE SUMMARY

The services of DeShazo Group, Inc. (DeShazo) were retained by Realty Capital Management, to conduct a traffic impact analysis (TIA) for the proposed mixed-use development in City of Keller, Texas. The subject property will be located at the northeast corner of the intersection of US 377/ Denton Highway and Mount Gilead Road in the City of Keller, Texas.

The proposed project is planned to be built in two phases and will be fully constructed by 2025. Table 1 shows the development program summary for the site development.

Table 1. Development Program Summary

Use	Quantity	Buildout Year
Single Family Homes	57 DU	2021
Multifamily Housing	275 DU	2021
Retail/Commercial	20,000 SF	2021
Multifamily Housing	275 DU	2025
Retail/Commercial	20,000 SF	2025
Restaurant	15,000 SF	2025

The analysis of the traffic generated by the proposed development resulted in moderate impact on the local roadway system. Below is a summary of findings from this TIA.

FINDING: Based upon the existing 2019 analysis, all study intersections are currently operating at LOS D or better during the peak hour periods.

FINDING: Based upon the 2025 background \& 2025 background plus full site buildout analysis all the study intersections are operating at LOS D or better with the exception of:

US 377/Denton Highway at Ridge Point Parkway-

- The signalized intersection is expected to operate at LOS E at 2025 background conditions during the AM peak hour without the proposed site.
- The signalized intersection is operating at LOS E during both the AM and PM peak hour for 2025 background plus site conditions. The proposed site traffic at the intersection increases the overall signal delay by less than 5 seconds only. The major contributor for the change in LOS is the projected background traffic.

Driveway 1 at US 377/Denton Highway-

- The WB left turning movement is expected to operate at LOS F during the both AM and PM peak hour periods for 2021 background plus site condition.

RECOMMENDATIONS:

US 377/Denton Highway at Ridge Point Parkway: The intersection is expected to operate at LOS E at 2025 full buildout conditions during the AM and PM peak hour periods for various movements. It is recommended that TxDOT revise the existing signal splits based on the actual volumes at the intersection after full site buildout. However, Appendix D shows the recommended splits for the
intersection at 2025 conditions for projected volumes. The synchro results of the signal optimization are attached in Appendix D.
Driveway 1 at US 377/Denton Highway: The WB left turning movement is expected to operate at LOS F with a maximum $95^{\text {th }}$ percentile queue of about 6 vehicles. This is because of heavy background volume on US 377/Denton Highway. The queuing will be inside the subject property and will not have an effect on the US 377/Denton Highway. Therefore, no improvements are needed.
FINDING: The proposed site will have 4 driveways on US 377 which allows a proportional distribution of traffic at all the driveways. Also, there are 6 driveways on Mount Gilead Road and Ridge Point Parkway combined. This will help reduce heavy movements on all the driveways.

FINDING: Based upon the projected volumes derived in this study, the installation of an auxiliary deceleration lane is not necessary as per TxDOT's standards at any of the driveways on US 377. The proposed site plan shows deceleration lanes at all the driveways on US 377. Even though, the volumes do not meet the requirements, it is beneficial to provide deceleration lanes on a highway like US 377. The projected traffic volume on Ridge Point Parkway and Mount Gilead Road are less, no right turn lanes are needed at driveways on Ridge Point Parkway and Mount Gilead.

FINDING: Driveways $2,3,4,6,7$, and 11 do not meet the TxDOT's driveway spacing requirements.
RECOMMENDATION: It is recommended to move Driveway 3 about 40 feet north to meet the spacing requirements with Driveway 2. All the driveways on Mount Gilead are expected to operate at acceptable level of service. Also, the inadequate spacing is not significantly less than the requirements. Therefore, an exception to the access criteria may be pursued with TxDOT and City to request a lesser spacing requirement.

FINDING: Based on a cursory review, the proposed site driveways meet the required intersection sight distance.

FINDING:

US 377/Denton Highway:

- Currently operates at LOS C or better for both NB and SB approach at existing conditions.
- Expected to operate at LOS C or better for NB approach and at LOS D for SB approach at 2025 full buildout conditions. The change in level of service from LOS C to LOS D for SB approach is due to the background traffic growth till 2025 not due to the site traffic. The proposed site traffic has very low impact on US 377/Denton Highway.

INTRODUCTION

The services of DeShazo Group, Inc. (DeShazo) were retained by Realty Capital Management, to conduct a traffic impact analysis (TIA) for the proposed mixed-use development in City of Keller, Texas. The subject property will be located at the northeast corner of the intersection of US 377/ Denton Highway and Mount Gilead Road in the City of Keller, Texas. The proposed project is planned to be built in two phases and will be fully constructed by 2025.

A site location map and preliminary site plan are provided in Exhibit 1 and Exhibit 2, respectively.

PURPOSE

City of Keller is requiring that a TIA be completed for the subject site as part of permit application. The purpose of the TIA is to determine if any improvements to the adjacent transportation system are needed in order to maintain a satisfactory level of service, an acceptable level of safety, and appropriate access for the proposed development.

TRAFFIC IMPACT ANALYSIS - METHODOLOGY

To achieve this objective, this analysis summarizes the traffic operational characteristics of the background conditions within a designated study area and the projected incremental impact of the Project as determined through standardized engineering analyses. The standard methodology used to conduct the traffic impact analysis is described below.

1. Collect current traffic volume data on a typical day throughout the study area to represent existing traffic conditions.
2. Apply growth factors to the existing volumes to project future background traffic at the site buildout year conditions.
3. Project traffic generated by the proposed development using trip generation, trip distribution and traffic assignment as described below.
a. Trip generation is calculated in terms of "trip ends" - a trip end is a one-way vehicular trip entering or exiting a site driveway (i.e., a single vehicle entering and exiting a site represents two trip ends).
b. Trip distribution and assignment of site-generated trips to the surrounding roadway system is determined by proportionally estimating the orientation of travel via various travel routes. This is a subjective exercise based upon professional judgment considering such factors as directional characteristics of existing local traffic; trip attributes (e.g., trip purpose, trip length, travel time, etc.), roadway features (e.g., capacity, operational conditions, character of environment), regional demographics, etc.
4. Determine site-plus-background traffic by adding the projected site-generated traffic to the background traffic.
5. Analyze existing, background and background-plus-site traffic volumes to evaluate the roadway conditions in the vicinity of the proposed development.
6. If needed, mitigation measures are recommended based upon the analysis to improve roadway operational conditions.

ANALYSIS SCENARIOS

This TIA analyzed the following peak hour periods that are considered the most critical conditions on the public roadway system related to the proposed Project. The proposed project is planned to be fully constructed by 2025.

Roadway Peak Hours Analyzed:

- Weekday: AM peak hour of adjacent street traffic
- Weekday: PM peak hour of adjacent street traffic

Development scenarios considered in this analysis are summarized in Table 2.
Table 2. Development Scenarios Analyzed

Scenario	Development Program	Traffic Volumes
2019 Existing	None Added	Existing 2019 Volumes
2021 Background + Site	Phase 1	Existing 2019 volumes grown at 2\% per year for 2 years plus site traffic
2025 Background	Phase 1	Background 2021 volumes grown at 2\% per year for 4 years
2025 Background + Site	Full Buildout (Mixed-Use Development)	Background 2021 volumes grown at 2\% per year for 4 years plus site traffic

FIGURE 4.1
STREET PLAN

STREET TYPE 1

STREET TYPE 2 OR 3
STREET TYPE 4

NOTE: A legally subdivided lot is not required to have frontage on a public right-of-way provided the lot has access to a Public Access Easement that connects to a public right-of-way.

* Driveway 10 will not exist

EXISTING AND PROPOSED LAND USE

The study parameters used in this TIA are based upon the requirements of TxDOT/City of Keller and are consistent with the standard industry practices used in similar studies.

SITE LOCATION AND STUDY AREA

The proposed Mixed-Use development, will be located at the northeast corner of the intersection of US 377, Denton highway and Mount Gilead Road in City of Keller, Texas.

Roadway Intersections:

- US 377/Denton Highway at Ridge Point Parkway: Signalized
- US 377/Denton Highway at Mount Gilead Road: Signalized
- US 377/Denton Highway at Driveway 1: Stopped Control on Driveway 1
- US 377/Denton Highway at Driveway 2: Stopped Control on Driveway 2
- US 377/Denton Highway at Driveway 3: Stopped Control on Driveway 3
- US 377/Denton Highway at Driveway 11: Stopped Control on Driveway 11
- Ridge Point Pkwy at Driveway 4: Stopped Control on Driveway 4
- Ridge Point Pkwy at Driveway 12: Stopped Control on Driveway 12
- Mount Gilead Road at Driveway 6: Stopped Control on Driveway 6
- Mount Gilead Road at Driveway 7: Stopped Control on Driveway 7
- Mount Gilead Road at Driveway 8: Stopped Control on Driveway 8
- Mount Gilead Road at Driveway 9: Stopped Control on Driveway 9
- Mount Gilead Road at Driveway 10: Stopped Control on Driveway 10

EXISTING SITE AND DEVELOPMENT

The site is currently vacant. The proposed development will consist of Mixed-use development with residential, retail, restaurant and office. The estimated buildout year is 2025 . The proposed development is to be built in two phases. Phase 1 of the development is estimated to be built by 2021. Phase 2 is estimated to be built by 2022.

EXISTING AND PROPOSED TRANSPORTATION SYSTEM

Thoroughfare System

- US 377/Denton Highway:
- Existing operation and cross-section: four lanes, two-way, divided
- Speed Limit: 55 mph (posted speed limit)
- TxDOT Functional Classification: Major Arterial, 4 lanes, divided

A summary of the existing and proposed intersection/roadway geometry and traffic control is shown in Exhibit 3 and Exhibit 4 respectively.

Existing Traffic Volumes

Current traffic volumes were collected during the analysis periods at the study area intersections on Wednesday, November 20, 2019. During the traffic data collection, it was observed that the EB and WB movements on Mt Gilead Road were closed due to construction. There was only NB and SB traffic observed at the intersection of US 377 at Mt Gilead Road. The TIA assumed traffic for all the directions at this intersection based on the surrounding area and professional judgement. The traffic signal timing during the peak hours for the two signalized intersections were determined from video recordings for data collection. Traffic volumes are graphically summarized in Appendix A and detailed 15-minute-count data sheets are provided in Appendix B.

Projected Background Traffic Volumes

Background traffic growth is defined as the normal traffic growth that is not directly related to the subject development of this study. Historical traffic volumes in the area have fluctuated in the last several years. A growth rate of $\underline{\mathbf{2 \%}}$ per year was used in this analysis throughout the buildout year of 2025. Future background traffic volumes estimate for the buildout years were calculated by applying the assumed growth rate for the study area intersections. These volumes are graphically summarized in Appendix A.

SITE-TRAFFIC CHARACTERISTICS

Traffic generated by the Project is projected by first determining the number of trips generated by the planned land use, then distributing and assigning projected site-related trips to the roadway system.

TRIP GENERATION

The Institute of Transportation Engineers Trip Generation manual (10th Edition) is an accepted source for calculating trip generation for common land uses for which sufficient published data is available.

Trip generation is summarized in trip ends - a trip end is a one-way vehicular trip entering or leaving a site (i.e., one vehicle arriving and departing represents two trip ends). This analysis evaluates typical weekday AM and PM peak hour conditions of the local street traffic.

Adjustments for Internal capture were considered for adjustment of the base ITE data for this analysis. Internal Capture of 16% for AM and 35% for PM were used for the full buildout.

A "pass-by trip" is a site-generated trip end that originates from the traffic volume that is otherwise passing by the site on the adjacent street. Hence, pass-by trips are reflected in the overall site driveway volumes but are not added to (i.e., already included in) the local roadway volume. Passby rates are published by ITE. For simplicity, in this analysis, the "total" site-generated trip ends were included in the driveway volumes, and only the net increase in trip ends were added to the adjacent street traffic.

Pass by trip was not considered in this study.
Table 3A \& 3B provides a summary of the calculated trip ends generated by the project. Excerpts from ITE Trip Generation data are provided in the Appendix section of this report. Supplemental information used in the trip generation calculations is provided in Appendix C.

Table 3A. Projected Trip Generation (Phase I)

Table 3B. Projected Trip Generation (Full Buildout)

ITE	ITE		Weekday		eak			ak H	
Code	Land Use		Trips	Total	In	Out	Total	In	Out
210	Single-Family Detached Housing	57 DU	620	45	11	34	59	37	22
221	Multifamily Housing(Mid-Rise)	550 DU	2,996	198	51	147	242	148	94
710	General Office Building	10,000 SF	114	36	31	5	13	2	11
820	Shopping Center	8,000 SF	1,079	156	97	59	84	40	44
820	Shopping Center	35,000 SF	2,944	157	97	60	194	93	101
932	High-Turnover (Sit-Down) Restaurant	15,000 SF	1,683	0	0	0	147	91	56
Internal Capture: 16\% AM and 35\% PM			9,436	592	287	305	739	411	328
			0	95	47	47	259	129	129
Totals:			9,436	497	240	258	480	282	199

TRIP DISTRIBUTION AND ASSIGNMENT

Traffic for the proposed development was distributed and assigned to the study area roadway network based upon the roadway network and regional travel flow [or existing traffic patterns]. The multifamily units are mainly going to attract adults between $25-35$ years. The inbound and outbound traffic generated by these multifamily units will mainly be to and from the office complex to the north. The traffic assignment is separate for Phase 1 and Phase 2. Detailed trip distribution and traffic assignment calculations and results are summarized in Appendix C.

SITE-GENERATED TRAFFIC VOLUMES

Site-generated traffic is calculated by multiplying the trip generation value (from Tables 3A \& 3B) by the corresponding traffic assignments (from Appendix C). The resulting cumulative (for all uses) peak period site-generated traffic volumes at buildout of the Project are graphically summarized in Appendix A.

ROADWAY INTERSECTION ANALYSIS

INTERSECTION CAPACITY ANALYSIS - METHODOLGY

The level of performance of infrastructure can often be measured through an analysis of volume and capacity that considers various physical and operational characteristics of the system. For vehicular traffic, an operational analysis of roadway intersection capacity is the most detailed type of analysis. An industry-standardized methodology for this type of analysis is presented in the Highway Capacity Manual (HCM). HCM uses the term "level of service" (LOS) to qualitatively describe the efficiency using a letter grade of A through F. Generally, LOS is described as follows.

```
\(\operatorname{LOS} A=\) free, unobstructed flow
LOS \(B=\) reasonably free flow
LOS C = stable flow
LOS D = approaching unstable flow
LOS \(E=\) unstable flow, operating at design capacity
LOS F = operating over design capacity
```

Traffic operational analysis is typically measured in one-hour periods during day-to-day peak conditions. In most urban settings, LOS C (or better) is desirable, although LOS D is considered to be acceptable. Nevertheless, periods of LOS E or F conditions are not uncommon for brief periods of time at major transportation facilities. In some cases, measures to add more capacity-either through operational changes and/or physical improvements-can be identified to increase efficiency and sometimes improve the level of service.

For traffic-signal-controlled ("signalized") intersections and STOP-controlled ("unsignalized") intersections, LOS is determined based upon the calculated average seconds of delay per vehicle. For signalized intersections, the average delay per vehicle can be effectively calculated for the entire intersection. However, the average delay per vehicle for unsignalized intersections is calculated by only approach or by individual traffic maneuvers that must stop or yield right-of-way. For unsignalized intersections of a minor street or driveway and a major roadway, the analysis methodology often breaks down and yields low levels of service (often, LOS F) that cannot be mitigated unless a traffic signal is installed. However, for a traffic signal to be installed, the responsible agency that governs the right-of-way must issue its approval subject to very specific warrant criteria being met and several other operational considerations being satisfied. Neither level of service nor delay is considered a criterion for traffic signal installation.

The following table summarizes the LOS criteria for signalized and unsignalized intersections as defined in the latest edition of the Highway Capacity Manual.

	Signalized Intersection (Average Delay per Vehicle)	Unsignalized Intersection (Average Delay per Vehicle)
LOS A	≤ 10	≤ 10
LOS B	$>10-\leq 20$	$>10-\leq 15$
LOS C	$>20-\leq 35$	$>15-\leq 25$
LOS D	$>35-\leq 55$	$>25-\leq 35$
LOS E	$>55-\leq 80$	$>35-\leq 50$
LOS F	>80	>50

NOTE: Signalized intersection operational parameters and operational results in this TIA were obtained directly from the optimized software output and may differ slightly from actual traffic signal operations.

2019 EXISTING - INTERSECTION ANALYSIS

Existing traffic volumes were analyzed to determine current operational conditions. Intersection capacity analyses presented in this study were performed using the SYNCHRO software package. Table 4 provides a summary of peak period intersectional operational conditions. Detailed traffic volumes and software output for all intersection analysis is provided in Appendix A and Appendix D, respectively.

Table 4. Existing Intersection Analysis

KEY:
$A, B, C, D, E, F=$ Level-of-Service for each intersection approach
$N B, S B, E B, W B=$ North-, South-, East-, Westbound approach

L, T, R = Left, Through, Right Approach turning movement
AM = AM Peak Hour of Adjacent Street
PM = AM Peak Hour of Adjacent Street
NOTE: Signalized intersection operational parameters and operational results were obtained directly from the optimized software output and may differ slightly from actual traffic signal operations.

Based upon the existing 2019 analysis, all study intersections are currently operating at LOS D or better during the peak hour periods.

2021 BACKGROUND PLUS SITE - INTERSECTION ANALYSIS

The phase one of development is expected to be completed by 2021. Therefore, year 2021 background-plus site traffic volumes were analyzed to determine the incremental change in operational conditions during peak periods with site-related traffic. The LOS results are provided in Table 5.

Table 5. 2021 Intersection Analysis

Based upon the 2021 background-plus site analysis all study intersections are currently operating at LOS D or better during the peak hour periods with the exception of:

Driveway 1 at US 377/Denton Highway-

- The WB left turning movement is expected to operate at LOS F during the both AM and PM peak hour periods for 2021 background plus site condition.

2025 BACKGROUND AND BACKGROUND PLUS SITE - INTERSECTION ANALYSIS

The development is expected to be completed by 2025. Therefore, year 2025 background (no build) and background-plus site traffic volumes were analyzed to determine the incremental change in operational conditions during peak periods without and with site-related traffic. The LOS results are provided in Table 6.

Table 6. 2025 Intersection Analysis

Based upon the 2021 background-plus site analysis all study intersections are currently operating at LOS D or better during the peak hour periods with the exception of:

US 377/Denton Highway at Ridge Point Parkway-

- The signalized intersection is operating at LOS E during both the AM and PM peak hour for 2025 background plus site conditions.

Driveway 1 at US 377/Denton Highway-

- The WB left turning movement is expected to operate at LOS F during the both AM and PM peak hour periods for 2021 background and 2021 background plus site condition.

ROADWAY LINK ANALYSIS - METHODOLGY

A roadway link is a roadway segment between two intersections. Roadway link capacity analysis is a comparison of actual or forecasted traffic volumes to the theoretically roadway capacity. The capacity of the roadway link is a function of the roadway's cross-section (i.e., number of lanes, lane widths, type of center divider, etc.). However, other more theoretical factors also apply, such as the character of environment and the functional classification of the roadway. Roadway link capacity is less critical than intersection capacity; however, it can provide a gauge of the utilization of given roadway.

A specific industry standard for roadway link capacity does not exist, but the typical concept is derived from a base saturation flow rate (i.e., the maximum theoretical rate of continuous flow under ideal, unobstructed conditions). In the traffic engineering industry, this value is generally considered to range between $1,900-2,100$ vehicles per lane per hour). A series of adjustment factors are then applied to the saturation flow rate to reflect the characteristics of a given location.

The North Central Texas Council of Governments (NCTCOG), the metropolitan planning agency for the Dallas-Melissa region, has derived internal "hourly service volume" guidelines used for transportation modelling purposes. The NCTCOG values were based upon the principles presented in the Highway Capacity Manual with "regional calibration" factors applied. Though these per-lane capacities, or "Service Volumes" (summarized in the table below), are intended for modelling purposes, they do provide a reasonable gauge of theoretical capacity.

Area Type	Hourly Service Volumes by Roadway Function					
	Principal Arterial		 Frontage Road		 Local Street	
	Median- Divided or One-Way	Undivided Two-Way	Median- Divided or One-Way	Undivided Two-Way	Median- Divided or One-Way	Undivided Two-Way
CBD	725	650	725	650	475	425
Urban/ Commercial	850	775	825	750	525	475
Suburban Residential	925	8,75	900	825	575	525
Rural	1,025	925	975	875	600	550

To determine the utilization of a roadway, the volume to capacity ratio is calculated - a v/c ratio of less than 1.0 indicates that the roadway is operating under capacity. NCTCOG's level of service denominations are as follows.

```
Volume: Capacity Ratio \(\leq 45 \%\) is LOS \(A / B\)
Volume: Capacity Ratio \(>45 \%\) and \(\leq 65 \%\) is LOS C
Volume: Capacity Ratio \(>65 \%\) and \(\leq 80 \%\) is LOS D
Volume: Capacity Ratio < \(80 \%\) and \(\leq 100 \%\) is LOS E
Volume: Capacity Ratio \(\geq 100 \%\) is LOS F
```


ROADWAY LINK ANALYSIS - RESULTS

For purpose of the roadway link analysis, the area is considered suburban residential. Existing peak hour volumes, the growth rate factor and peak hour projected site-generated trips were used to conduct the roadway link analysis which is summarized in Table 7.

Table 7. Roadway Link Capacity Analysis Results Summary

Roadway	Direction	Classification for Analysis	*Hourly Volume		MEDIAN DIVIDED?	CAPACITY		V/C	LOS
						Per Lane	Roadway		
2019 Existing:									
US 377/Denton Highway (South of Ridge Point Parkway)	NB	Major Arterial	894	2	Y	925	1,850	0.48	C
	SB	Major Arterial	1,018	2	Y	925	1,850	0.55	C
2021 Background + Site:									
US 377/Denton Highway (South of Ridge Point Parkway)	NB	Major Arterial	994	2	Y	925	1,850	0.54	C
	SB	Major Arterial	1,080	2	Y	925	1,850	0.58	C
2025 Background:									
US 377/Denton Highway (South of Ridge Point Parkway)	NB	Major Arterial	1,070	2	Y	925	1,850	0.58	C
	SB	Major Arterial	1,167	2	Y	925	1,850	0.63	C
2025 Background + Site:									
US 377/Denton Highway (South of Ridge Point Parkway)	NB	Major Arterial	1,137	2	Y	925	1,850	0.61	C
	SB	Major Arterial	1,210	2	Y	925	1,850	0.65	D

Based upon the roadway link analysis:

US 377/Denton Highway

- Currently operates at LOS C or better for both NB and SB approach at existing conditions.
- Expected to operate at LOS C or better for NB approach and at LOS D for SB approach at 2025 full buildout conditions.

STTE ACCESS REVIEW

Intersection sight distance, driveway spacing and deceleration lane requirements were also evaluated as part of this TIA.

INTERSECTION SIGHT DISTANCE

INTERSECTION SIGHT CRITERIA:

Sight distance is the metric used to describe the ability of a motorist to physically see (via a direct line of sight) objects and/or other vehicles to a degree sufficient to allow safe and efficient use of a roadway in the intended manner. The sight distance is a function of the major roadway's geometric characteristics and $85^{\text {th }}$ percentile speed.

INTERSECTION SIGHT DISTANCE REVIEW FOR PROJECT

Cursory review of the proposed driveways found that all the proposed driveways satisfy the intersection sight distance criteria.
[NOTE: This does not rule out the potential that other impediments such and landscaping, signage, etc. may exist.]

DRIVEWAY SPACING REVIEW

TXDOT SPACING CRITERIA:

The TxDOT Access Management Manual provides guidelines for new driveways along roadways based upon the posted speed limit. Based upon Tables 2-1, 2-2 (Appendix E) from TxDOT's Access Management Manual, the minimum driveway connection spacing is 425 feet for a speed limit greater than or equal to 50 mph such as US 377 . TxDOT considers the spacing between access points as inside-edge-(of driveway pavement)-to-inside-edge.

CITY OF KELLER SPACING CRITERIA:

The City of Keller driveway spacing requirements are provided in City's Unified Development code (section 5.07 - Driveways). The minimum spacing for arterial is 250 feet and for collector is 150 feet.

DRIVEWAY SPACING REVIEW FOR PROJECT:

A summary of the driveway spacing provided for each of the proposed site access points is presented in Table 8.

Table 8. Driveway Spacing Summary

Spacing Between	Required (Ft)	Provided $(\mathbf{F t})$	Meets Requirements
Driveway 11 and Mt Gilead Road	425	~ 400	No
Driveway 1 and Driveway 11	425	~ 425	Yes
Driveway 1 and Driveway 2	425	~ 800	Yes
Driveway 2 and Driveway 3	425	~ 390	No
Driveway 3 and Ridge Point Parkway	425	~ 510	Yes
US 377 and Driveway 4	250	~ 70	No
Driveway 4 and Driveway 12	150	~ 150	Yes
Driveway 6 and Driveway 7	150	~ 110	No
Driveway 7 and Driveway 8	150	>200	Yes

Driveway 8 and Driveway 9	150	>200	Yes
Driveway 9 and US 377	250	~ 350	Yes
Driveway 6 and Nearest East Driveway	150	~ 200	Yes

All the proposed site driveways meet TxDOT/City of Keller driveway spacing criteria except for Driveway 2, Driveway 3, Driveway 4, Driveway 11, Driveway 6 and Driveway 7.

DECELERATION LANE ANALYSIS

DECELERATION LANE CRITERIA:

The TxDOT criteria for providing right-turn deceleration auxiliary lanes are outlined in Table 2-3 (Appendix E) of the Access Management Manual. The threshold for roadways with a posted speed limit greater than 45 MPH is 50 vehicles per hour (or, 60 vehicles per hour for posted speed limit of 45 MPH or lower). For raised medians, left-turn deceleration lanes ("bays") are required for all leftturn opportunities. Additionally, table 3-11 from TxDOT Roadway Design Manual was used in the determination of left-turn deceleration auxiliary lanes.

A summary of the projected peak hour driveway volumes is included in Appendix A for each scenario analyzed.

DECELERATION LANE RECOMMENDATIONS:

Based upon the projected volumes derived in this study, the installation of an auxiliary deceleration lane does not meet TxDOT's requirement at all the driveways on US 377. The projected traffic volume on Ridge Point Parkway and Mount Gilead Road are less, the right turning vehicles to the site will not create an issue on these roads.

SUMMARY OF FINDINGS AND RECOMMENDATIONS

The services of DeShazo Group, Inc. (DeShazo) were retained by Realty Capital Management, to conduct a traffic impact analysis (TIA) for the proposed mixed-use development in City of Keller, Texas. The subject property will be located at the northeast corner of the intersection of US 377/ Denton Highway and Mount Gilead Road in the City of Keller, Texas.

The proposed project is planned to be built in two phases and will be fully constructed by 2025. Table 1 shows the development program summary for the site development.

Table 1. Development Program Summary

Use	Quantity	Buildout Year
Single Family Homes	57 DU	2021
Multifamily Housing	275 DU	2021
Retail/Commercial	20,000 SF	2021
Multifamily Housing	275 DU	2025
Retail/Commercial	20,000 SF	2025
Restaurant	15,000 SF	2025

The analysis of the traffic generated by the proposed development resulted in moderate impact on the local roadway system. Below is a summary of findings from this TIA.

FINDING: Based upon the existing 2019 analysis, all study intersections are currently operating at LOS D or better during the peak hour periods.

FINDING: Based upon the 2025 background \& 2025 background plus full site buildout analysis all the study intersections are operating at LOS D or better with the exception of:

US 377/Denton Highway at Ridqe Point Parkway-

- The signalized intersection is expected to operate at LOS E at 2025 background conditions during the AM peak hour without the proposed site.
- The signalized intersection is operating at LOS E during both the AM and PM peak hour for 2025 background plus site conditions. The proposed site traffic at the intersection increases the overall signal delay by less than 5 seconds only. The major contributor for the change in LOS is the projected background traffic.

Driveway 1 at US 377/Denton Highway-

- The WB left turning movement is expected to operate at LOS F during the both AM and PM peak hour periods for 2021 background plus site condition.

RECOMMENDATIONS:

US 377/Denton Highway at Ridge Point Parkway: The intersection is expected to operate at LOS E at 2025 full buildout conditions during the AM and PM peak hour periods for various movements. It is recommended that TxDOT revise the existing signal splits based on the actual volumes at the intersection after full site buildout. However, Appendix D shows the recommended splits for the intersection at 2025 conditions for projected volumes. The synchro results of the signal optimization are attached in Appendix D.

Driveway 1 at US 377/Denton Highway: The WB left turning movement is expected to operate at LOS F with a maximum $95^{\text {th }}$ percentile queue of about 6 vehicles. This is because of heavy background volume on US 377/Denton Highway. The queuing will be inside the subject property and will not have an effect on the US 377/Denton Highway. Therefore, no improvements are needed.

FINDING: The proposed site will have 4 driveways on US 377 which allows a proportional distribution of traffic at all the driveways. Also, there are 6 driveways on Mount Gilead Road and Ridge Point Parkway combined. This will help reduce heavy movements on all the driveways.

FINDING: Based upon the projected volumes derived in this study, the installation of an auxiliary deceleration lane is not necessary as per TxDOT's standards at any of the driveways on US 377. The proposed site plan shows deceleration lanes at all the driveways on US 377. Even though, the volumes do not meet the requirements, it is beneficial to provide deceleration lanes on a highway like US 377. The projected traffic volume on Ridge Point Parkway and Mount Gilead Road are less, no right turn lanes are needed at driveways on Ridge Point Parkway and Mount Gilead.

FINDING: Driveways $2,3,4,6,7$, and 11 do not meet the TxDOT's driveway spacing requirements.
RECOMMENDATION: It is recommended to move Driveway 3 about 40 feet north to meet the spacing requirements with Driveway 2. All the driveways on Mount Gilead are expected to operate at acceptable level of service. Also, the inadequate spacing is not significantly less than the requirements. Therefore, an exception to the access criteria may be pursued with TxDOT and City to request a lesser spacing requirement.

FINDING: Based on a cursory review, the proposed site driveways meet the required intersection sight distance.

FINDING:

US 377/Denton Highway:

- Currently operates at LOS C or better for both NB and SB approach at existing conditions.
- Expected to operate at LOS C or better for NB approach and at LOS D for SB approach at 2025 full buildout conditions. The change in level of service from LOS C to LOS D for SB approach is due to the background traffic growth till 2025 not due to the site traffic. The proposed site traffic has very low impact on US 377/Denton Highway.

END OF MEMO

Appendix A. Traffic Volume Exhibits

Appendix B. Existing Traffic Count Data

Intersection Traffic Movements													DeShazo Group, Inc.			
Location: US 377 at Ridge Point Parkway City/State: Keller, Texas Data Collector(s): Camera Day/Date: Monday, November 25, 2019 Weather Conditions: Mild/Normal Condition Project-ID \#: 19125 (1) Traffic Control: Signalized Data Source: CJ Hensch																
Time of Count	Northbound on US 377				Southbound on US 377				Eastbound on Keller Haslet Road				Westbound on Ridge Point Parkway			
Begin End	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
7:00 AM 7:15 AM	0	9	194	7	0	15	98	17	0	47	42	23	0	8	6	4
7:15 AM 7:30 AM	0	11	218	15	0	27	130	14	0	36	46	10	0	16	14	5
7:30 AM 7:45 AM	0	14	199	15	0	30	127	21	0	29	49	23	0	16	31	24
7:45 AM 8:00 AM	0	14	183	17	0	26	124	17	0	28	38	21	0	18	56	14
8:00 AM 8:15 AM	0	25	164	8	0	9	109	12	0	39	24	23	0	10	18	9
8:15 AM 8:30 AM	0	22	196	18	0	8	136	11	0	36	21	26	0	7	10	6
8:30 AM 8:45 AM	0	22	155	6	0	11	110	21	0	30	18	33	0	15	10	6
8:45 AM 9:00 AM	0	8	147	7	0	8	111	14	0	25	18	30	0	11	8	1
Intersection PHN:	0	48	794	54	0	98	479	69	0	140	175	77	0	58	107	47
PHF:	0.00	0.86	0.91	0.79	0.00	0.82	0.92	0.82	0.00	0.74	0.89	0.84	0.00	0.81	0.48	0.49
Intersection Peak Hour: 7:00 AM-8:00 AM Intersection PHF: 0.93																
Study Area PHV: PHF:	0	48	794	54	0	98	479	69	0	140	175	77	0	58	107	47
	0.00	0.86	0.91	0.79	0.00	0.82	0.92	0.82	0.00	0.74	0.89	0.84	0.00	0.81	0.48	0.49
Study Peak Hour: 7:00 AM - 8:00 AM													Study Area PHF: 0.93			
4:30 PM 4:45 PM	0	34	120	11	0	16	241	74	0	24	22	29	0	9	21	15
4:45PM 5:00 PM	0	51	134	19	0	21	201	101	0	18	20	25	0	11	53	9
5:00 PM 5:15 PM	0	54	149	12	0	20	244	103	0	13	20	24	0	9	49	3
5:15 PM 5:30 PM	0	39	160	20	0	13	222	83	0	13	28	27	0	10	38	11
5:30 PM 5:45 PM	0	39	159	19	0	16	209	65	0	26	35	21	0	10	33	7
5:45 PM 6:00 PM	0	55		22	0	24	202	95	0	16	42	22	0	10	37	10
6:00 PM 6:15PM	0	39	109	33	0	26	190	83	0	16	36	25	0	18	36	8
6:15PM 6:30 PM	0	42	109	14	0	39	212	69	0	15	38	16	0	25	39	13
Intersection PH:	0	187	609	73	0	73	877	346	0	68	125	94	0	39	157	31
PHF:	0.00	0.85	0.95	0.83	0.00	0.76	0.90	0.84	0.00	0.65	0.74	0.87	0.00	0.98	0.80	0.70
Intersection Peak Hour: 5:00 PM-6:00 PM Intersection PHF: 0.96																
Study Area PHV:	0	187	609	73	0	73	877	346	0	68	125	94	0	39	157	31
PHF:	0.00	0.85	0.95	0.83	0.00	0.76	0.90	0.84	0.00	0.65	0.74	0.87	0.00	0.98	0.80	0.70
Study Peak Hour: 5:00 PM - 6:00 PM													Study Area PHF: 0.96			
Observations:																

Appendix C. Site-Generated Traffic Supplement

Appendix D. Detailed Intersection Capacity Analysis Results

2010 HCM Intersection Capacity Analysis

	\rangle	\rightarrow		\dagger	\leftarrow		4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			¢		${ }^{7}$	¢ \uparrow	7	\%	¢ \uparrow	F
Trafic Volume (vph)	100	4	75	33	3	29	30	781	31	44	547	50
Future Volume (yph)	100	4	75	33	3	29	30	781	31	44	547	50
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. How (vph)	109	4	82	36	3	32	33	849	34	48	595	54
Shared Lane Traffic (\%)												
Lane Group How (vph)	0	195	o	0	71	0	33	849	34	48	595	54
Turn Type	Split	NA		Split	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		8	8		5	2		1	6	
Permitted Phases									2			6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5		22.5	22.5		9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	20.0	20.0		17.0	17.0		12.0	28.0	28.0	12.0	28.0	28.0
Total Split (\%)	26.0\%	26.0\%		22.1\%	22.1\%		15.6\%	36.4\%	36.4\%	15.6\%	36.4\%	36.4\%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5
Al-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		4.5			4.5		4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None		None	None		None	Max	Max	None	Max	Max
Act Efft Green (s)		11.0			7.4		6.8	28.1	28.1	6.9	30.2	30.2
Actuated g/C Ratio		0.18			0.12		0.11	0.46	0.46	0.11	0.49	0.49
v/c Ratio		0.57			0.31		0.17	0.53	0.04	0.24	0.34	0.06
Control Delay		26.5			22.0		31.6	18.0	0.1	32.4	14.4	0.1
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		26.5			22.0		31.6	18.0	0.1	32.4	14.4	0.1
LOS		c			c		c	B	A	c	B	A
Approach Delay		26.5			22.0			17.8			14.5	
Approach LOS		c			c			B			B	
Queue Length 50th (ti)		58			15		13	153	0	18	67	o
Queue Length 95th (t)		124			52		40	252	0	52	167	0
Internal Link Dist (ti)		140			409			743			739	
Tum Bay Length (ti)							325		325	375		213
Base Capacity (vph)		483			388		226	1616	804	226	1740	854
Starvation Cap Reductn		-			0		0	0	0	0	0	0
Spillback Cap Reductn		0			o		o	o	0	0	0	o
Storage Cap Reductn		0			0		0	0	0	0	0	0
Reduced v/c Ratio		0.40			0.18		0.15	0.53	0.04	0.21	0.34	0.06
Intersection Summary												
Cyde Length: 77												
Actuated Oyde Length: 61.5												
Natural Cyde: 80												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.57												
Intersection Signal Delay. 17.6					Itersection	LOS: B						

TAA for Center Stage Mixed-Use Development in Keller, Texas

2010 HCM Intersection Capacity Analysis
2019 Existing
1: US 377/Denton Highway \& Mount Gilead Rd

	\rangle			\checkmark	\leftarrow		4	\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\uparrow	7	\dagger	¢ \uparrow	7	${ }_{1}$	个 \uparrow	F
Traffic Volume (vph)	140	175	77	41	107	33	48	808	38	69	508	69
Future Volume (vph)	140	175	77	41	107	33	48	808	38	69	508	69
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. How (yph)	151	188	83	44	115	35	52	869	41	74	546	74
Shared Lane Traffic (\%)												
Lane Group How (vph)	0	422	0	0	159	35	52	869	41	74	546	74
Turn Type	Split	NA		Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		8	8		5	2		1	6	
Permitted Phases						8			2			6
Detector Phase	4	4		8	8	8	5	2	2	1	6	6
Suitch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Mnimum Solit (s)	22.5	22.5		22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	55.0	55.0		40.0	40.0	40.0	15.0	65.0	65.0	25.0	75.0	75.0
Total Split (\%)	29.7\%	29.7\%		21.6\%	21.6\%	21.6\%	8.1\%	35.1\%	35.1\%	13.5\%	40.5\%	40.5\%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		4.5			4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
LeadLlag	Lead	Lead		Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes		Yes								
Recall Mode	None	None		None	None	None	None	Max	Max	None	Max	Max
Act Efft Green (s)		41.6			19.2	19.2	8.9	66.2	66.2	12.1	72.0	72.0
Actuated g/C Ratio		0.26			0.12	0.12	0.06	0.42	0.42	0.08	0.46	0.46
V/c Ratio		0.89			0.71	0.13	0.46	0.58	0.06	0.55	0.34	0.10
Control Delay		76.6			85.9	1.0	90.0	39.5	3.1	88.6	31.0	6.6
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		76.6			85.9	1.0	90.0	39.5	3.1	88.6	31.0	6.6
LOS		E			F	A	F	D	A	F	c	A
Approach Delay		76.6			70.6			40.7			34.5	
Approach LOS		E			E			D			c	
Queue Length 50th (tt)		422			165	0	54	371	0	77	201	0
Queue Length 95th (ti)		\#609			259	0	111	530	14	142	290	36
Internal Link Dist (ft)		1078			111			314			544	
Tum Bay Length (ft)							1000		535	360		240
Base Capacity (vph)		584			421	430	136	1489	701	234	1620	765
Starvation Cap Reductn		0			0	0	0	0	0	0	0	0
Spillback Cap Reductn		0			0	0	0	o	0	0	0	o
Storage Cap Reductn		0			0	0	0	0	-	0	-	-
Reduced v/c Ratio		0.72			0.38	0.08	0.38	0.58	0.06	0.32	0.34	0.10
Intersection Summary												
Oycle Length: 185												
Actuated Oyde Length: 157.3												
Natural Cycle: 90												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.89												
Intersection Signal Delay. 48.0					tersection	LOS: D						

TA for Center Stage Mixed-Use Development in Keller, Texas

2010 HCM Intersection Capacity Analysis
11: US 377/Denton Highway \& Keller Haslet Rd/Ridge Point Pkwy

Intersection Capacity Uilization 66.1\%
 ICU Level of Service C

\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum atter two cycles.

2010 HCM Intersection Capacity Analysis

	$\stackrel{ }{*}$						4	\dagger	p			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢		\%	$\uparrow \uparrow$	F	${ }_{7}$	¢ \uparrow	F
Traffic Volume (vph)	50	3	30	27	4	24	75	782	37	35	833	100
Future Volume (vph)	50	3	30	27	4	24	75	782	37	35	833	100
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. How (vph)	54	3	33	29	4	26	82	850	40	38	905	109
Shared Lane Trafic (\%)												
Lane Group How (yph)	0	90	o	0	59	0	82	850	40	38	905	109
Turn Type	Split	NA		Split	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		8	8		5	2		1	6	
Perritted Phases									2			
Detector Phase	4	4		8	8		5	2	2	1	6	6
Svitch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Mnimum Split (s)	22.5	22.5		22.5	22.5		9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	22.0	22.0		18.0	18.0		12.0	25.0	25.0	12.0	25.0	25.0
Total Split (\%)	28.6\%	28.6\%		23.4\%	23.4\%		15.6\%	32.5\%	32.5\%	15.6\%	32.5\%	32.5\%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		4.5			4.5		4.5	4.5	4.5	4.5	4.5	4.5
Leadllag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None		None	None		None	Max	Max	None	Max	Max
Act Efft Green (s)		7.8			7.1		7.3	33.2	33.2	6.9	31.1	31.1
Actuated g/C Ratio		0.15			0.14		0.14	0.64	0.64	0.13	0.60	0.60
V/c Ratio		0.32			0.23		0.33	0.38	0.04	0.16	0.43	0.11
Control Delay		19.9			19.2		28.8	13.1	0.1	26.9	15.7	2.1
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		19.9			19.2		28.8	13.1	0.1	26.9	15.7	2.1
LOS		B			B		c	B	A	c	B	
Approach Delay		19.9			19.2			13.9			14.7	
Approach LOS		B			B			B			B	
Queue Length 50th (tt)		19			11		28	87	0	13	148	
Queue Length 95th (t)		57			42		70	225	0	39	\#268	18
Intemal Link Dist (t)		140			409			743			739	
Turn Bay Length (tt)							325		325	375		213
Base Capacity (vph)		641			495		274	2252	1061	274	2110	1004
Starvation Cap Reductn		0			0		0	0	0	0	0	
Spillback Cap Reductn		0			0		0	0	0	0	0	
Storage Cap Reductn		0			0		0	0	0	0	0	
Reduced v/c Ratio		0.14			0.12		0.30	0.38	0.04	0.14	0.43	0.11
Intersection Summary												
Oycle Length: 77												
Actuated Oyde Length: 52.2												
Natural Cycle: 80												
Control Type: Actuated-Uncoordinated												
Maximumv/c Ratio: 0.43												
Intersection Signal Delay					tersection	LOS: B						

TA for Center Stage Mixed-Use Development in Keller, Texas

2010 HCM Intersection Capacity Analysis
2019 Existing
1: US 377/Denton Highway \& Mount Gilead Rd
Intersection Capacity Utilization 44.9\% ICU Level of Service A

Analysis Period (min) 15

- 95th percentile volume exceeds capacity, queue may be longe

Queue shown is maximum atter two cycles.

	\rangle		\geqslant	\checkmark			4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow	F	\％	个个	F	7	个 \uparrow	「
Traffic Volume（vph）	68	125	94	27	157	22	187	618	51	51	897	346
Future Volume（yph）	68	125	94	27	157	22	187	618	51	51	897	346
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj． How（yph）	71	130	98	28	164	23	195	644	53	53	934	360
Shared Lane Traffic（\％）												
Lane Group low（vph）	0	299	0	0	192	23	195	644	53	53	934	360
Turn Type	Split	NA		Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		8	8		5	2		1	6	
Permitted Phases						8			2			6
Detector Phase	4	4		8	8	8	5	2	2	1	6	6
Svitch Phase												
Minimum Initial（ s ）	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	22.5	22.5		22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split（s）	60.0	60.0		40.0	40.0	40.0	27.0	60.0	60.0	25.0	58.0	58.0
Total Split（\％）	32．4\％	32．4\％		21．6\％	21．6\％	21．6\％	14．6\％	32．4\％	32．4\％	13．5\％	31．4\％	31．4\％
YellowTime（s）	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All－Red Time（s）	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust（s）		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）		4.5			4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead／Lag	Lead	Lead		Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead－Lag Optimize？	Yes	Yes		Yes								
Recall Mode	None	None		None	None	None	None	Max	Max	None	Max	Max
Act Efft Green（s）		28.7			20.2	20.2	18.8	66.0	66.0	9.8	54.3	54.3
Actuated g／C Ratio		0.20			0.14	0.14	0.13	0.47	0.47	0.07	0.39	0.39
v／c Ratio		0.81			0.72	0.08	0.72	0.39	0.07	0.43	0.68	0.49
Control Delay		68.6			74.8	0.5	76.4	28.3	5.6	77.7	41.7	17.1
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		68.6			74.8	0.5	76.4	28.3	5.6	77.7	41.7	17.1
LOS		E			E	A	E	c	A	E	D	
Approach Delay		68.6			66.8			37.5			36.5	
Approach LOS		E			E			D			D	
Queue Length 50th（tt）		252			170	0	172	203	0	47	376	97
Queue Length 95th（ti）		391			283	0	297	339	25	104	575	237
Intemal Link Dist（t）		1078			111			314			544	
Tum Bay Length（ft）							1000		535	360		240
Base Capacity（vph）		714			475	471	326	1663	77	262	1369	742
Starvation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v／c Ratio		0.42			0.40	0.05	0.60	0.39	0.07	0.20	0.68	0.49
Intersection Summary												
Oycle Length： 185												
Actuated Oyde Length： 140.3												
Natural Cyde： 90												
Control Type：Actuated－Uncoordinated												
Maximumv／c Ratio： 0.81												
Intersection Signal Delay． 42.7					Itersection	LOS：D						

[^0]Analysis Period（min） 15

2010 HCM Intersection Capacity Analysis

2010 HCM Intersection Capacity Analysis
1: US 377/Denton Highway \& Mount Gilead Rd
2021 Background + Site

Intersection Capacity Uliization 52.5\%

nalysis Period (min) 15

- 95th percentile volume exceeds capacity, queue may be longe

Queue shown is maximum after two cycles.

2010 HCM Intersection Capacity Analysis 11: US 377/Denton Highway \& Keller Haslet Rd/Ridge Point Pkwy									2021 Background + Site Timing Plan: AM			
	\Rightarrow			\checkmark				\uparrow			\downarrow	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow	F'	\%	¢ \uparrow	「	*	¢ \uparrow	F
Traffic Volume (vph)	146	199	83	44	116	59	70	882	41	111	542	72
Future Volume (vph)	146	199	83	44	116	59	70	882	41	111	542	72
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. How (vph)	157	214	89	47	125	63	75	948	44	119	583	77
Shared Lane Traffic (\%)												
Lane Group Fow (vph)	0	460	0	0	172	63	75	948	44	119	583	77
Turn Type	Split	NA		Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		8	8		5	2		1	6	
Permitted Phases						8			2			
Detector Phase	4	4		8	8	8	5	2	2	1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5		22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	55.0	55.0		40.0	40.0	40.0	15.0	65.0	65.0	25.0	75.0	75.0
Total Split (\%)	29.7\%	29.7\%		21.6\%	21.6\%	21.6\%	8.1\%	35.1\%	35.1\%	13.5\%	40.5\%	40.5\%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0	0.0	0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		4.5			4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lead	Lead		Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Ye	Yes	Yes	Yes
Recall Mode	None	None		None	None	None	None	Max	Ma	None	Ma	Max
Act Effict Green (s)		46.6			20.9	20.9	9.8	64.7	64.	16.0	70.9	70.9
Actuated g/C Ratio		0.28			0.1	0.13	0.0	0.39	0.3	0.10	0.4	0.4
R Ratio		0.91			0.7	0.2	0.6	0.69	0.0	0.70	0.3	0.11
Control Delay		80.6			90.5	6.2	102.1	47.7	3.9	95.7	35.1	6.6
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		80.6			90.5	6.2	102.1	47.7	3.9	95.7	35.1	6.6
LOS		F			F	A	F	D	A	F	D	
Approach Delay		80.6			67.9			49.7			41.6	
Approach LOS		F			E			D			D	
Queue Length 50th (tt)		485			189	0	83	474	0	131	240	
Queue Length 95th (ti)		\#726			278	22	\#160	617	17	211	316	37
Intemal Link Dist (t)		1078			111			314			544	
Tum Bay Length (t)							1000		535	360		240
Base Capacity (vph)		548			394	408	127	1376	653	219	1507	718
Stanation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.84			0.44	0.15	0.59	0.69	0.07	0.54	0.39	0.11
Intersection Summary												
Oycle Length: 185												
Actuated Oyde Length: 166.3												
Natural Oycle: 90												
Control Type: Actuated-Uncoordinated												
Maximumv/c Ratio: 0.91												
Intersection Signal Delay					tersection	LOS: D						

2010 HCM Intersection Capacity Analysis 11: US 377/Denton Highway \& Keller Haslet Rd/Ridge Point Pkwy

ntersection Capacity Utilization 72.1%

Analysis Period (min) 15
Queue shown is maximum atter two cycles.

[^1]

[^2]

TA for Center Stage Mixed-Use Development in Keller, Texas

TA for Center Stage Mixed-Use Development in Keller, Texas

TA for Center Stage Mixed-Use Development in Keller, Texas

TA for Center Stage Mixed-Use Development in Keller, Texas

Stage Mixed Use Development in Keller. Texas

2010 HCM Intersection Capacity Analysis

2010 HCM Intersection Capacity Analysis
1: US 377/Denton Highway \& Mount Gilead Rd
2021 Background + Site

Intersection Capacity Uilization 47.2\%

nalysis Period (min) 15
95th percentile volume exceeds capacity, queue may be longe
Queue shown is maximum atter two cycles.

\square_{01}	\dagger_{02}	\rangle_{84}	708
12 s	25 s	22 s	18 s
405	$\square_{\square 6}$		

2010 HCM Intersection Capacity Analysis 11：US 377／Denton Highway \＆Keller Haslet Rd／Ridge Point Pkwy									2021 Background＋Site Timing Plan：PM			
	\Rightarrow			\checkmark				\uparrow				
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			\uparrow	7	\％	个4	$\bar{\square}$	${ }^{7}$	个个	7
Traffic Volume（vph）	71	149	101	30	167	39	208	670	54	97	948	360
Future Volume（yph）	71	149	101	30	167	39	208	670	54	97	948	360
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．How（vph）	74	155	105	31	174	41	217	698	56	101	988	375
Shared Lane Traffic（\％）												
Lane Group Fow（vph）	0	334	0	0	205	41	217	698	56	101	988	375
Turn Type	Split	NA		Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		8	8		5	2		1	6	
Permitted Phases						8			2			
Detector Phase	4	4		8	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	22.5	22.5		22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split（s）	60.0	60.0		40.0	40.0	40.0	27.0	60.0	60.0	25.0	58.0	58.0
Total Split（\％）	32．4\％	32．4\％		21．6\％	21．6\％	21．6\％	14．6\％	32．4\％	32．4\％	13．5\％	31．4\％	31．4\％
Yellow Time（s）	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All－Red Time（s）	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust（s）		0.0			0.0	0.0	0.0	． 0	0.0	0.0	0.0	0.0
Total Lost Time（s）		4.5			4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead／Lag	Lead	Lead		Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead－Lag Optimize？	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Ye	Ye	Yes	Yes
Recall Mode	None	None		None	None	None	None	Max	Ma	None	Ma	Max
Act Effict Green（s）		32.7			21.9	21.9	20.7	61.0	61.	14.0	54.2	54.2
Actuated g／C Ratio		0.22			0.1	0.1	0.14	0.41	0.4	0.09	0.3	0.37
R Ratio		0.83			0.7	0.1	0.78	0.48	0.0	0.60	0.76	0.53
Control Delay		71.8			78.9	0.9	81.7	36.3	7.4	82.4	48.0	20.4
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		71.8			78.9	0.9	81.7	36.3	7.4	82.4	48.0	20.4
LOS		E			E	A	F	D	A	F	D	
Approach Delay		71.8			65.9			44.8			43.3	
Approach LOS		E			E			D			D	
Queue Length 50th（tt）		301			193	0	203	255	0	96	445	123
Queue Length 95th（ti）		449			312	－	\＃385	424	31	176	\＃667	271
Intemal Link Dist（t）		1078			111			314			544	
Tum Bay Length（t）							1000		535	360		240
Base Capacity（vph）		680			449	451	309	1460	689	249	1298	713
Stanation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	o	0	0	0	0	
Reduced v／c Ratio		0.49			0.46	0.09	0.70	0.48	0.08	0.41	0.76	0.53
Intersection Summary												
Oycle Length： 185												
Actuated Oyde Length： 147.8												
Natural Oycle： 90												
Control Type：Actuated－Uncoordinated												
Maximumv／c Ratio： 0.83												
Intersection Signal Delay					tersection	LOS：D						

2010 HCM Intersection Capacity Analysis 11：US 377／Denton Highway \＆Keller Haslet Rd／Ridge Point Pkwy

ntersection Capacity Uilization 81．1\％

ICULevel of Service D

nalysis Period（min） 15
\＃95th percentile volume exceeds capacity，queue may be longer
Queue shown is maximum after two cycles．

[^3]

[^4]Synchro 10 Report

[^5]

TAA for Center Stage Mixed-Use Development in Keller, Texas

TA for Center Stage Mixed-Use Development in Keller, Texas

TAA for Center Stage Mixed-Use Development in Keller, Texas

TA for Center Stage Mixed-Use Development in Keller, Texas

Center Stage Mixed-Use Development in Keller, Texas

2010 HCM Intersection Capacity Analysis
2025 Background Timing Plan: AM

	\rangle			7	\leftarrow		4	\uparrow	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			¢		1	¢ \uparrow	$\overline{7}$	${ }_{1}$	个 \uparrow	F
Traffic Volume (vph)	115	5	84	49	3	38	34	916	44	56	662	60
Future Volume (vph)	115	5	84	49	3	38	34	916	44	56	662	60
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. How (yph)	125	5	91	53	3	41	37	996	48	61	720	65
Shared Lane Traffic (\%)												
Lane Group How (vph)	0	221	0	0	97	0	37	996	48	61	720	65
Turn Type	Split	NA		Split	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		8	8		5	2		1	6	
Permitted Phases									2			6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Svitch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Mnimum Split (s)	22.5	22.5		22.5	22.5		9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	20.0	20.0		17.0	17.0		12.0	28.0	28.0	12.0	28.0	28.0
Total Split (\%)	26.0\%	26.0\%		22.1\%	22.1\%		15.6\%	36.4\%	36.4\%	15.6\%	36.4\%	36.4\%
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		4.5			4.5		4.5	4.5	4.5	4.5	4.5	4.5
LeadLlag							Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None		None	None		None	Max	Max	None	Max	Max
Act Efft Green (s)		11.7			7.9		6.7	27.1	27.1	7.0	29.3	29.3
Actuated g/C Ratio		0.18			0.12		0.10	0.42	0.42	0.11	0.45	0.45
V/c Ratio		0.64			0.39		0.20	0.67	0.06	0.32	0.45	0.08
Control Delay		30.4			23.6		33.1	22.7	0.2	35.1	16.9	0.2
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		30.4			23.6		33.1	22.7	0.2	35.1	16.9	0.2
LOS		c			c		c	c	A	D	B	A
Approach Delay		30.4			23.6			22.1			16.9	
Approach LOS		c			c			c			B	
Queue Length 50th (tt)		71			22		15	202	0	25	92	0
Queue Length 95th (ti)		146			65		44	\#355	0	63	212	0
Internal Link Dist (ft)		140			409			743			739	
Tum Bay Length (ft)							325		325	375		213
Base Capacity (vph)		455			374		212	1487	751	212	1609	801
Starvation Cap Reductn		0			0		0	0	0	0	0	0
Spillback Cap Reductn		0			0		0	0	0	0	0	0
Storage Cap Reductn		0			0		0	0	0	0	-	-
Reduced v/c Ratio		0.49			0.26		0.17	0.67	0.06	0.29	0.45	0.08
Intersection Summary												
Cyde Length: 77												
Actuated Cyde Length: 64.4												
Natural Cycle: 80												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.67												
Intersection Signal Delay. 21.0					tersection	LOS: C						

2010 HCM Intersection Capacity Analysis
Intersection Capacity Utilization 55.4\% ICULevel of Service B

Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer
Queue shown is maximum after two cycles.

11: US 377/Denton Highway \& Keller Haslet Rd/Ridge Point Pkwy Timing Plan: AM

Itersection Capacity Utilization 82.4\%

ICULevel of Service E
Analysis Period (min) 15 . 95 th percentile volume exceeds capacity, queue may be longer
\# queue shown is maximum after two cycles.

TAA for Center Stage Mixed-Use Development in Keller, Texas

TAA for Center Stage Mixed-Use Development in Keller, Texas
b

Synchro 10 Report

[^6]

TA for Center Stage Mixed-Use Development in Keller, Texas
b

TAA for Center Stage Mixed-Use Development in Keller, Texas

A for Center Stage Mixed-Use Development in Keller, Texas

TA for Center Stage Mixed-Use Development in Keller, Texas

TAA for Center Stage Mixed-Use Development in Keller, Texas
b

Afor Center Stage Mixed-Use Development in Keller, Texas

2010 HCM Intersection Capacity Analysis
2025 Background Timing Plan：PM

	\rangle	\rightarrow	7	\dagger	\leftarrow		4	\uparrow	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\dagger		\％	个个	7	${ }^{7}$	¢ \uparrow	「
Traffic Volume（vph）	59	3	34	38	5	33	84	922	52	44	969	115
Future Volume（vph）	59	3	34	38	5	33	84	922	52	44	969	115
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj． How （yph）	64	3	37	41	5	36	91	1002	57	48	1053	125
Shared Lane Traffic（\％）												
Lane Group Fow（vph）	0	104	0	0	82	0	91	1002	57	48	1053	125
Turn Type	Split	NA		Split	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		8	8		5	2		1	6	
Permitted Phases									2			6
Detector Phase	4	4		8	8		5	2	2	1	6	6
Svitch Phase												
Minimum Initial（ s ）	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	22.5	22.5		22.5	22.5		9.5	22.5	22.5	9.5	22.5	22.5
Total Split（s）	22.0	22.0		18.0	18.0		12.0	25.0	25.0	12.0	25.0	25.0
Total Split（\％）	28．6\％	28．6\％		23．4\％	23．4\％		15．6\％	32．5\％	32．5\％	15．6\％	32．5\％	32．5\％
Yellow Time（s）	3.5	3.5		3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5
All－Red Time（s）	1.0	1.0		1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust（s）		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）		4.5			4.5		4.5	4.5	4.5	4.5	4.5	4.5
LeadLlag							Lead	Lag	Lag	Lead	Lag	Lag
Lead－Lag Optimize？							Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None		None	None		None	Max	Max	None	Max	Max
Act Efft Green（s）		8.1			7.4		7.2	29.4	29.4	6.8	26.9	26.9
Actuated g／CRatio		0.14			0.13		0.12	0.51	0.51	0.12	0.46	0.46
v／c Ratio		0.39			0.33		0.42	0.56	0.07	0.23	0.64	0.15
Control Delay		22.7			20.2		33.0	19.3	0.2	29.3	22.3	3.2
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		22.7			20.2		33.0	19.3	0.2	29.3	22.3	3.2
LOS		c			c		c	B	A	c	c	A
Approach Delay		22.7			20.2			19.4			20.6	
Approach LOS		c			c			B			c	
Queue Length 50th（tt）		24			16		32	173	0	16	188	0
Queue Length 95th（tt）		66			53		78	\＃332	0	48	\＃357	26
Intemal Link Dist（tt）		140			409			743			739	
Turn Bay Length（ft）							325		325	375		213
Base Capacity（vph）		558			438		236	1784	872	236	1635	811
Starvation Cap Reductn		0			0		0	o	0	0	0	0
Spillback Cap Reductn		0			o		0	0	0	0	0	o
Storage Cap Reductn		－			－		0	－	0	－	0	0
Reduced v／c Ratio		0.19			0.19		0.39	0.56	0.07	0.20	0.64	0.15
Intersection Summary												
Cycle Length： 77												
Actuated Oyde Length： 58.2												
Natural Cycle： 90												
Control Type：Actuated－Uncoordinated												
Maximum v／c Ratio： 0.64												
Intersection Signal Delay： 20.2					tersection	LOS： C						

2010 HCM Intersection Capacity Analysis

ICU Level of Service A
 Intersection Capacity Uliter

．US 377 Denton Highway \＆Mount Gilead Rd

Analysis Period（min） 15 95th percentile volume exceeds capacity，queue may be longer
\＃95th percentile volume exceeds capacity，qu
Queue shown is maximum atter two cycles．

\square_{01}	\dagger_{02}	\rangle_{84}	708
12 s	25 s	22 s	18 s
405	$\square_{\square 6}$		

11: US 377/Denton Highway \& Keller Haslet Rd/Ridge Point Pkwy Timing Plan: PM

Intersection Capacity Utilization 86.3\%
 nalysis Period (min

95it percentile volume exceeds capacity, queue may be longe.
\# queue shown is maximum after two cycles.

[^7]

TA for Center Stage Mixed-Use Development in Keller, Texas
b

TA for Center Stage Mixed-Use Development in Keller, Texas

TAA for Center Stage Mixed-Use Development in Keller, Texas
b

TA for Center Stage Mixed-Use Development in Keller, Texas

A for Center Stage Mixed-Use Development in Keller, Texas

TA for Center Stage Mixed-Use Development in Keller, Texas

TAA for Center Stage Mixed-Use Development in Keller, Texas
b

Afor Center Stage Mixed-Use Development in Keller, Texas

2010 HCM Intersection Capacity Analysis
1: US 377/Denton Highway \& Mount Gilead Rd
2025 Background + Site

TAA for Center Stage Mixed-Use Development in Keller, Texas
b

2010 HCM Intersection Capacity Analysis
2025 Background + Site 1: US 377/Denton Highway \& Mount Gilead Rd

Timing Plan: AM

Intersection Capacity Uilization 55.9\%

Analysis Period (min) 15 . 95 th percentile volume exceeds capacity, queue may be longer
Queue shown is maximum after two cycles.

2010 HCM Intersection Capacity Analysis 11: US 377/Denton Highway \& Keller Haslet Rd/Ridge Point Pkwy										2025 Background + Site			
	\Rightarrow			\checkmark		4						\downarrow	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL		NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow	F	\%		$\uparrow \uparrow$	F	${ }^{*}$	个个	
Traffic Volume (vph)	158	223	96	51	133	63	80		987	45	138	608	78
Future Volume (yph)	158	223	96	51	133	63	80		987	45	138	608	78
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93		0.93	0.93	0.93	0.93	0.93
Adj. How (vph)	170	240	103	55	143	68	86		1061	48	148	654	84
Shared Lane Traffic (\%)													
Lane Group Fow (vph)	0	513	0	0	198	68	86		061	48	148	654	
Turn Type	Split	NA		Split	NA	Perm	Prot		NA	Perm	Prot	NA	Perm
Protected Phases	4	4		8	8		5		2		1	6	
Permitted Phases						8				2			
Detector Phase	4	4		8	8	8	5		2	2	1	6	
Switch Phase													
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0	5.0
Mnimum Split (s)	22.5	22.5		22.5	22.5	22.5	9.5		22.5	22.5	9.5	22.5	22.5
Total Split (s)	55.0	55.0		40.0	40.0	40.0	15.0		65.0	65.0	25.0	75.0	75.0
Total Split (\%)	29.7\%	29.7\%		21.6\%	21.6\%	21.6\%	8.1\%		5.1\%	35.1\%	13.5\%	40.5\%	40.5\%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5
Al-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Lost Time (s)		4.5			4.5	4.5	4.5		4.5	4.5	4.5	4.5	4.5
LeadLLag	Lead	Lead		Lag	Lag	Lag	Lag		Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Ye
Recall Mode	None	None		None	None	None	None		Max	Max	None	Max	Max
Act Efft Green (s)		50.6			23.8	23.8	10.2		62.5	62.5	18.3	70.6	70.6
Actuated g/C Ratio		0.29			0.14	0.14	0.06		0.36	0.36	0.11	0.41	0.41
v/c Ratio		0.98			0.79	0.23	0.74		0.83	0.08	0.80	0.45	0.12
Control Delay		92.8			93.5	6.9	113.6		58.1	5.0	104.3	39.2	
Queue Delay		0.0			0.0	0.0	0.0		0.0	0.0	0.0	0.0	
Total Delay		92.8			93.5	6.9	113.6		58.1	5.0	104.3	39.2	
LOS		F			F	A	F		E	A	F	D	
Approach Delay		92.8			71.3				60.0			47.1	
Approach LOS		F			E				E			D	
Queue Length 50th (t)		576			221	0	98		590	0	165	283	
Queue Length 95th (tt)		\#890			317	27	\#201		737	22	\#281	371	
Internal Link Dist (ft)		1078			111				314			544	
Tum Bay Length (t)							1000			535	360		240
Base Capacity (vph)		525			377	395	121		276	610	209	1442	69
Starvation Cap Reductn		0			0	0	0		0	0	0	0	
Spillback Cap Reductn		0			0	0			o	0	0	0	
Storage Cap Reductn		0			0	0	0		0	0	0	0	
Reduced V/c Ratio		0.98			0.53	0.17	0.71		0.83	0.08	0.71	0.45	0.12
Intersection Summary													
Ocle Length: 185													
Actuated Oyde Length: 173.2													
Natural Cyde: 110													
Control Type: Actuated-Uncoordinated													
Maximumv/c Ratio: 0.98													
Intersection Signal Delay					Itersectio	LOS: E							

2010 HCM Intersection Capacity Analysis 11: US 377/Denton Highway \& Keller Haslet Rd/Ridge Point Pkwy

2025 Background + Site Intersection Capacity Uilization 86.1\%
\# Analysis Period (min) 15
Queue shown is maximum atter two cycles.

TAA for Center Stage Mixed-Use Development in Keller, Texas

TA for Center Stage Mixed-Use Development in Keller, Texas

TA for Center Stage Mixed-Use Development in Keller, Texas

[^8]Synchro 10 Report

TA for Center Stage Mixed-Use Development in Keller, Texas

TA for Center Stage Mixed-Use Development in Keller, Texas

TAA for Center Stage Mixed-Use Development in Keller, Texas

TA for Center Stage Mixed-Use Development in Keller, Texas
b

Center Stage Mixed Use Development in Keller, Texas

2010 HCM Intersection Capacity Analysis

2010 HCM Intersection Capacity Analysis
1: US 377/Denton Highway \& Mount Gilead Rd
2025 Bakground + Site

Intersection Capacity Uilization 50.6\%
Analysis Period (min) 15

- 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum atter two cycles.

\square_{01}	\dagger_{02}	\rangle_{84}	708
12 s	25 s	22 s	18 s
405	$\square_{\square 6}$		

2010 HCM Inters 11：US 377／Den	ion C Highw	pacity ay \＆			$\underline{\mathrm{Rd} / \mathrm{Rid}}$	ge Poi				Bakg	ound Timing	$\begin{aligned} & + \text { Site } \\ & \text { Plan: PM } \end{aligned}$
	\Rightarrow			\downarrow				\uparrow				
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		${ }_{4}$			\uparrow	7	\％	¢ \uparrow	「	\％	个个	7
Traffic Volume（vph）	77	172	117	36	187	44	230	756	60	128	1052	390
Future Volume（yph）	77	172	117	36	187	44	230	756	60	128	1052	390
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj．How（vph）	80	179	122	38	195	46	240	788	63	133	1096	406
Shared Lane Traffic（\％）												
Lane Group Fow（vph）	0	381	0	0	233	46	240	788	63	133	1096	406
Turn Type	Split	NA		Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		8	8		5	2		1	6	
Permitted Phases						8			2			6
Detector Phase	4	4		8	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	22.5	22.5		22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split（s）	60.0	60.0		40.0	40.0	40.0	27.0	60.0	60.0	25.0	58.0	58.0
Total Split（\％）	32．4\％	32．4\％		21．6\％	21．6\％	21．6\％	14．6\％	32．4\％	32．4\％	13．5\％	31．4\％	31．4\％
Yellow Time（s）	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All－Red Time（s）	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust（s）		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）		4.5			4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
ead／Lag	Lead	ead		Lag	Lag	Lag	Lag	Lag	Lag	ead	Lead	Lead
Lead－Lag Optimize？	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Y	Yes	Yes	Yes
Recall Mode	None	None		None	None	None	None	Max	Ma	None	Ma	Max
Act Effict Green（s）		38.7			25.2	25.	22.	60.4	60	16.5	54.1	54.1
Actuated g／C Ratio		0.24			0.16	0.16	0.14	0.38	0.38	0.10	0.3	0.3
R Ratio		0.87			0.80	0.14	0.84	0.59	0.10	0.73	0.91	0.60
Control Delay		76.1			85.6	0.9	91.4	45.0	9.6	93.7	62.5	27.0
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		76.1			85.6	0.9	91.4	45.0	9.6	93.7	62.5	27.0
LOS		E			F	A	F	D	A	F	E	
Approach Delay		76.1			71.7			53.2			56.2	
Approach LOS		E			E			D			E	
Queue Length 50th（tt）		368			234	0	244	344	0	134	569	174
Queue Length 95th（ti）		535			371	－	\＃490	539	41	241	\＃913	360
Intemal Link Dist（t）		1078			111			314			544	
Tum Bay Length（t）							1000		535	360		240
Base Capacity（vph）		631			417	425	287	1344	640	231	1205	673
Stanation Cap Reductn		0			0	0	0	0	0	0	0	
Spillback Cap Reductn		0			0	0	0	0	0	0	0	
Storage Cap Reductn		0			0	0	o	0	0	0	0	
Reduced v／c Ratio		0.60			0.56	0.11	0.84	0.59	0.10	0.58	0.91	0.60
Intersection Summary												
Oycle Length： 185												
Actuated Cyde Length：												
Natural Cycle： 100												
Control Type：Actuated－	ordinated											
Maximumv／c Ratio： 0.91												
Intersection Signal Delay					ntersectio	LOS：E						

2010 HCM Intersection Capacity Analysis
2025 Bakground＋Site 11：US 377／Denton Highway \＆Keller Haslet Rd／Ridge Point Pkwy

Intersection Capacity Utilization 89．1\％

Analysis Period（min） 15 95th percentile volume exceeds capacity，queue may be longer．
A．Sueue shown is maximum after two cycles．

3: Mount Gilead Rd \& Driveway 9_Timing Plan: PM

[^9]

[^10]

TA for Center Stage Mixed-Use Development in Keller, Texas

[^11]Synchro 10 Report

TAA for Center Stage Mixed-Use Development in Keller, Texas

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^12]

TAA for Center Stage Mixed-Use Development in Keller, Texas

TAA for Center Stage Mixed-Use Development in Keller, Texas
b

Center Stage Mixed-Use Development in Keller, Texas

2010 HCM Intersection Capacity Analysis
2025 Background + Site (Signal Optimization) 11: US 377/Denton Highway \& Keller Haslet Rd/Ridge Point Pkwy Timing Plan: AM

2010 HCM Intersection Capacity Analysis
2025 Background + Site (Signal Optimization) 11: US 377/Denton Highway \& Keller Haslet Rd/Ridge Point Pkwy

ntersection Capacity Uilization 86.1\%
 ICULevel of Service E

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer
Queue shown is maximum after two cydles

2010 HCM Intersection Capacity Analysis 2025 Bakground + Site (Signal Optimization) 11: US 377/Denton Highway \& Keller Haslet Rd/Ridge Point Pkwy Timing Plan: PM

	\rangle							\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			\uparrow	7	\%	¢ \uparrow	7	${ }^{7}$	个个	F
Traffic Volume (vph)	π	172	117	36	187	44	30	756	60	128	1052	390
Future Volume (vph)	77	172	117	36	187	44	230	756	60	128	105	390
Peak Hour Factor	0.96	0.96	96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. How (yph)	80	179	122	38	195	46	240	788	63	133	1096	406
Shared Lane Traffic (\%)												
Lane Group Fow (vph)	0	381	0	0	233	46	240	788	63	133	1096	406
Turn Type	Split	NA		Split	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	4	4		8	8		5	2		1	6	
Permitted Phases						8			2			
Detector Phase	4	4		8	8	8	5	2	2	1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5		22.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5	22.5
Total Split (s)	25.0	25.0		22.5	22.5	22.5	17.0	36.8	36.8	15.7	35.5	35.5
Total Split (\%)	25.0\%	25.0\%		22.5\%	22.5\%	22.5\%	17.0\%	36.8\%	36.8\%	15.7\%	35.5\%	35.5\%
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		4.5			4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag	Lead	Lead		Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes		Yes								
Recall Mode	None	None		None	None	None	None	Max	Max	None	Max	Max
Act Efft Green (s)		20.5			16.0	16.0	12.5	33.1	33.1	10.5	31.0	31.0
Actuated g/C Ratio		0.21			0.16	0.16	0.13	0.34	0.34	0.11	0.32	0.32
v/c Ratio		0.99			0.77	0.12	0.94	0.66	0.10	0.70	0.98	0.53
Control Deay		81.7			57.2	0.6	87.2	31.5	1.0	63.4	56.8	6.2
Queue Delay		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay		81.7			57.2	0.6	87.2	31.5	1.0	63.4	56.8	6.2
LOS		F			E	A	F	c	A	E	E	
Approach Delay		81.7			47.8			42.0			44.	
Approach LOS		F			D			D				
Queue Length 50th (tt)		-235			141	0	154	228	0	83	365	
Queue Length 95th (tt)		\#429			\#240	0	\#305	296	5	\#164	\#514	79
Intemal Link Dist (t)		78			111			314			544	
Tum Bay Length (ft)							1000		535	360		240
Base Capacity (vph)		385			339	424	255	1193	609	202	1119	766
Stavation Cap Reductn		0			0	-	0	-	0	0	-	
Spillback Cap Reductn		0			0	0	o	0	0	0	0	
Storage Cap Reductn		0			0	0	0	0	0	0	0	
Reduced v/c Ratio		0.99			0.69	0.11	0.94	0.66	0.10	0.66	0.98	0.53
Intersection Summary												
Oyde Length: 100												
Actuated Cyde Length: 98.1												
Natural Oycle: 100												
Control Type: Actuated-Uncoordinated												
Maximum v/c Ratio: 0.99												
Intersection Signal Delay 48.3				Intersection LOS: D								

2010 HCM Intersection Capacity Analysis
2025 Bakground + Site (Signal Optimization) 11: US 377/Denton Highway \& Keller Haslet Rd/Ridge Point Pkwy

Intersection Capacity Uilization 89.1\%
 ICULevel of Service E

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Appendix E. TxDOT/City's Driveway Spacing and Deceleration Lane Criteria

Figure 2-3. Frontage Road U-Turn Spacing Diagram

Table 2-1: Frontage Road Connection Spacing Criteria

Minimum Connection Spacing Criteria for Frontage Roads ${ }^{(1)(2)}$		
	Minimum Connection Spacing (feet)	
Posted Speed (mph)	One-Way Frontage Roads	Two-Way Frontage Roads
≤ 30	200	200
35	250	300
40	305	360
45	360	435
≥ 50	425	510
(1) Distances are for passenger cars on level grade. These distances may be adjusted for downgrades and/or significant truck traffic. Where present or projected traffic operations indicate specific needs, consideration may be given to intersection sight distance and operational gap acceptance measurement adjustments. (2) When these values are not attainable, refer to the variance process as described in Chapter 2, Section 5.		

Other State System Highways

This section applies to all state highway system routes that are not new highways on new alignments, freeway mainlanes, or frontage roads.

Table 2-2 provides minimum connection spacing criteria for other state system highways. However, a lesser connection spacing than set forth in this document may be allowed without variance in the situations described in Chapter 2, Section 5.

Table 2-2 does not apply to rural highways outside of metropolitan planning organization boundaries where there is little, if any, potential for development with current ADT volumes below 2000. For those highways, access location and design will be evaluated based on safety and traffic operation considerations. Such considerations may include traffic volumes, posted speed, turning volumes, presence or absence of shoulders, and roadway geometrics.

Table 2-2: Other State Highways Connection Spacing Criteria

Other State Highways Minimum Connection Spacing ${ }^{(1)(2)(3)}$	
Posted Speed (mph)	Distance (ft)
≤ 30	200
35	250
40	305
45	360
≥ 50	425
(1) Distances are for passenger cars on level grade. These distances may be adjusted for downgrades and/or significant truck traffic. Where present or projected traffic operations indicate specific needs, consideration may be given to intersection sight distance and operational gap acceptance measure- ment adjustments. (2) When these values are not attainable, refer to the variance process as described in Chapter 2, Section 5. (3) Access spacing values shown in this table do not apply to rural highways outside of metropolitan planning organization boundaries where there is little, if any, potential for development with current ADT levels below 2000. Access connection spacing below the values shown in this table may be approved based on safety and operational considerations as determined by TxDOT.	

Corner clearance refers to the separation of access connections from roadway intersections. Table 2-2 provides minimum corner clearance criteria.

Where adequate access connection spacing cannot be achieved, the permitting authority may allow for a lesser spacing when shared access is established with an abutting property. Where no other alternatives exist, construction of an access connection may be allowed along the property line farthest from the intersection. To provide reasonable access under these conditions but also provide the safest operation, consideration should be given to designing the driveway connection to allow only the right-in turning movement or only the right-in/right out turning movements if feasible.

Auxiliary Lanes

This subsection describes the basic use and functional criteria associated with auxiliary lanes. Auxiliary lanes consist of left-turn and right-turn movements, deceleration, acceleration, and their associated transitions and storage requirements. Left-turn movements may pose challenges at driveways and street intersections. They may increase conflicts, delays, and crashes and often complicate traffic signal timing. These problems are especially acute at major highway intersections
where heavy left-turn movements take place, but also occur where left-turn movements enter or leave driveways serving adjacent land development. As with left-turn movements, right-turn movements pose problems at both driveways and street intersections. Right-turn movements increase conflicts, delays, and crashes, particularly where a speed differential of 10 mph or more exists between the speed of through traffic and the vehicles that are turning right.

Table 2-3 presents thresholds for auxiliary lanes. These thresholds represent examples of where left turn and right turn lanes should be considered. Refer to the TxDOT Roadway Design Manual, Chapter 3, for proper acceleration and deceleration lengths.

Table 2-3: Auxiliary Lane Thresholds

Median Type	Left Turn to or from Property		Right Turn to or from Property (5)	

(1) Refer to Table 3-11, TxDOT Roadway Design Manual, for alternative left-turn-bay operational considerations.
(2) A left-turn acceleration lane may be required if it would provide a benefit to the safety and operation of the roadway. A left-turn acceleration lane would interfere with the left-turn ingress movements to any other access connection.
(3) Additional right-turn considerations:

- Conditions for providing an exclusive right-turn lane when the right-turn traffic volume projections are less than indicated in Table 2-3:
- High crash experience
- Heavier than normal peak flow movements on the main roadway
- Large volume of truck traffic
- Highways where sight distance is limited
- Conditions for NOT requiring a right-turn lane where right-turn volumes are more than indicated in Table 2-3:
- Dense or built-out corridor where space is limited
- Where queues of stopped vehicles would block the access to the right turn lane
- Where sufficient length of property width is not available for the appropriate design
(4) The acceleration lane should not interfere with any downstream access connection.
- The distance from the end of the acceleration lane taper to the next unsignalized downstream access connection should be equal to or greater than the distances found in Table 2-2.
- Additionally, if the next access connection is signalized, the distance from the end of the acceleration lane taper to the back of the 90th percentile queue should be greater than or equal to the distances found Table 2-2.
(5) Continuous right-turn lanes can provide mobility benefits both for through movements and for the turning vehicles. ${ }^{\text {a }}$ Access connections within a continuous right turn lane should meet the spacing requirements found in Table 22. However, when combined with crossing left in movements, a continuous right-turn lane can introduce additional operational conflicts.

Table 3-11: Guide for Left-Turn Lanes on Two-Lane Highways

Opposing Volume (vph)	Advancing Volume (vph)			
-	5 \% Left Turns	10 \% Left Turns	20 \% Left Turns	30 \% Left Turns
40 mph [60 km/h] Design Speed				
800	330	240	180	160
600	410	305	225	200
400	510	380	275	245
200	640	470	350	305
100	720	515	390	340
50 mph [80 km/h] Design Speed				
800	280	210	165	135
600	350	260	195	170
400	430	320	240	210
200	550	400	300	270
100	615	445	335	295
60 mph [100 km/h] Design Speed				
800	230	170	125	115
600	290	210	160	140
400	365	270	200	175
200	450	330	250	215
100	505	370	275	240

Right-Turn Deceleration Lanes. Shoulders 10 ft [3.0 m] wide alongside the traffic lanes generally provide sufficient area for acceleration or deceleration of right-turning vehicles. Where the right turn lane is being constructed in addition to the through lanes and shoulders, the minimum right turn lane width is 10 ft [3.0 m] with a 2 ft [0.6 m] surfaced shoulder. Where speed change lanes are used, they should be provided symmetrically along both sides of the highway for both directions of traffic, thus presenting drivers with a balanced section.

A deceleration-acceleration lane on one side of a two-lane highway, such as at a "tee" intersection, results in the appearance of a three-lane highway and may result in driver confusion. In this regard, right-turn speed change lanes are generally inappropriate for "tee" intersection design except where a four lane (2 through, 1 median left turn, 1 right acceleration/deceleration) section is provided.

Section 5.07 - Driveways

All driveways in the City of Keller shall be constructed with a permit from the Public Works Department. A permit will be granted by the City Engineer only after due consideration of safety, traffic flow, and conflicts with existing and proposed facilities. In addition to the above, access to State controlled highways shall require State and City permits.
A. Residential Driveway Approaches

1. Residential driveway approaches shall follow these guidelines:

Residential driveways shall be permitted onto residential streets only, unless an access from a residential street is not available. Driveways (either individual or the entry drive of a subdivision) shall be located a minimum of seventy-five feet (75') from any intersection of residential streets and a minimum of two hundred fifty feet (250') from any intersection of arterial or collector streets. This may be waived by the DRC on a case-by-case basis for reasons of hardship not created by the applicant, nor solely financial in nature. Driveways shall not be located within the entry drive of a subdivision.
2. Width shall be twelve feet (12^{\prime}) minimum and twenty-four feet (24^{\prime}) maximum, plus a five-foot (5') radii (if access is onto street) or a five-foot (5') flare (if access is onto alley).
3. The radius or flare point at the street or alley of any driveway shall not extend beyond the intersection of the side property line(s) with the street or alley when projected.
4. All residential driveway approaches shall be constructed in accordance with the City Standard Driveway Construction Details and be maintained by the property owners or property associations.
5. Maximum slope of a residential driveway shall not exceed eight percent (8%) up to the right-of-way line. Sidewalk cross slopes shall not exceed two percent (2\%) when crossing a driveway.
B. Non-Residential and Multi-Family Driveway Approaches

Non-Residential and Multi-Family driveway approaches shall follow these guidelines:

1. Required widths:
a. One-Way Driveway: Fifteen feet (15') plus ten-foot (10') radii.
b. Two-Way Driveway: Thirty feet (30') plus fifteen-foot (15') radii.
c. A maximum width of forty-five feet (45^{\prime}) plus twenty-foot (20^{\prime}) radii will be allowed where significant traffic is projected for two-way access as determined by the Director of Public Works.
2. Maximum slope of a commercial driveway shall not exceed six percent (6\%) up to the right-of-way line and ten percent (10\%) beyond the right-of-way line on a case-by-case basis (as determined by the Fire Department), except in areas required for accessibility purposes. Sidewalk cross slopes shall not exceed two percent (2\%) when crossing a driveway.
3. The minimum spacing (measured at inside edge of driveway to inside edge of driveway at the right-of-way line) between driveways along:
a. Principal arterial streets (A6D) (A4D) (C4U) shall be two hundred fifty feet (250') on the same platted lot, and two hundred feet (200') between adjacent lots. Joint access shall be strongly considered for adjacent properties. All properties shall extend access points to the adjacent property for future connection.
b. Collector streets (C2U) (C3U) shall be one hundred fifty feet (150').
c. Driveways shall be located a minimum of two hundred fifty feet (250 ') from arterial street intersections and two hundred feet (200') from collector street intersections.
4. All two-way driveways shall intersect at ninety degrees $\left(90^{\circ}\right)$.
5. Parking lots shall be designed with adequate internal circulation. There shall be a minimum of sixty feet (60^{\prime}) driveway (throat length) between the street and the internal traffic lane at driveway locations. Adequate site distances and on-site maneuvering shall be available from every driveway. The parking lot and driveways shall be so designed to allow vehicles to exit the street in a forward manner, to park, load and unload totally within the site, and to enter onto the street in a forward manner. In no instance shall vehicles use street right-of-way to travel in reverse unless approved by a Planned Development or in the Old Town/Town Center Zoning Districts.
6. All non-residential driveway approaches shall be constructed in accordance with the City Standard Driveway Construction Details and be maintained by the property owners or property associations.
7. All driveways for non-residential uses shall have a minimum ten-foot (10') wide band of brick/concrete pavers or stamped concrete at the entry drives and crosswalks. The color and materials shall be consistent with the existing or proposed pattern of the nonresidential use(s). The band of brick/concrete pavers or stamped concrete shall be centered with the sidewalk.
C. Modifications

Modifications or alternatives to the standards in this section may be considered by the Director of Public Works. If he/she determines that the requested changes will not create a serious detriment to the safety or operation of traffic on the street or roadway, he/she may forward to the City Council for final approval. The Director of Public Works may require that the applicant submit a traffic analysis if it is determined that such an analysis is necessary in order to render a decision on the request.
D. Right-of-Way Work Permit

No construction, grading, excavation, repair or reconstruction of any street, curb or gutter, or any sidewalk or driveway between the street and the property line shall be commenced without first obtaining a Right-of-Way Work Permit from the Director of Public Works. A permit is not required for the utility companies in case of an emergency to restore service or to perform minor repair and maintenance operations.

[^0]: Afor Center Stage Mixed Use Development in Keller，Texas

[^1]: Afor Center Stage Mixed-Use Development in Keller, Texas

[^2]: A for Center Stage Mixed-Use Development in Keller, Texas

[^3]: A for Center Stage Mixed-Use Development in Keller, Texas

[^4]: Afor Center Stage Mixed-Use Development in Keller, Texas

[^5]: Afor Center Stage Mixed-Use Development in Keller, Texas

[^6]: A for Center Stage Mixed-Use Development in Keller, Texas

[^7]: A for Center Stage Mixed-Use Development in Keller, Texas

[^8]: A for Center Stage Mixed-Use Development in Keller, Texas

[^9]: A for Center Stage Mixed-Use Development in Keller, Texas

[^10]: A for Center Stage Mixed-Use Development in Keller, Texas

[^11]: A for Center Stage Mixed-Use Development in Keller, Texas

[^12]: Afor Center Stage Mixed-Use Development in Keller, Texas

